LAMP-TR-003 November 1996
CFAR-TR-847
CS-TR-3732

Feature Normalization for Video Indexing and Retrieval

Vikrant Kobla, David Doermann, King-Ip (David) Lin, Christos
Faloutsos
Language and Media Processing Labratory

Instititue for Advanced Computer Studies
College Park, MD 20742

Abstract

Fast and efficient storage, browsing, indexing, and retrieval of video is necessary for the
development of various multimedia database applications. Given that video is typically
stored efficiently in a compressed format, if we can analyze the compressed representation
directly, we can avoid the costly overhead of decompressing and operating at the pixel
level. Compressed domain parsing of video has been presented in earlier work where
key frames are identified for shots, subshots, and scenes. In this paper, we describe key
frame selection, feature extraction, indexing, and retrieval techniques that are directly
applicable to MPEG-compressed video. We develop a frame-type independent represen-
tation of the various types of frames present in an MPEG video in which all frames can
be considered equivalent. Features are derived from the available DCT, macroblock, and
motion vector information and mapped to a low-dimensional space where they can be
accessed using standard database techniques. The spatial information is used as primary
index while the temporal information is used to enhance the robustness of the system
during the retrieval process. The techniques presented enable fast archiving, indexing,
and retrieval of video. Our operational prototype typically takes a fraction of a second
to retrieve similar video scenes from our database, with over 95% success.
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1 Introduction

With the development of various multimedia compression standards and significant
increases in desktop computer performance and storage, the widespread exchange of
multimedia information is becoming a reality. Video is arguably the most popular
means of communication and entertainment. With this popularity comes an increase
in the volume of video and an increased need for the ability to automatically sift
through and search for relevant material stored in large video databases (LVDBs).
Even with increases in hardware capabilities which make video distribution possible,
factors such as algorithm speed and storage costs are concerns that must still be
addressed.

With this in mind, a first consideration should therefore be to attempt to increase
speed when using existing compression standards. Performing analysis in the com-
pressed domain reduces the amount of effort involved in decompression, and providing
a means of abstracting the data keeps the storage costs of the resulting feature set
low. Both of these problems are active areas of research.

A second consideration is that a user who is interested in searching for and retriev-
ing video clips needs a way to interface with the database by formulating appropriate
queries. These queries need to be appropriately translated into a form that can be
used to search an index and retrieve the matching clips. A typical approach to in-
dexing and archiving video for retrieval requires parsing the video, extracting key
information from each clip (possibly a single frame), indexing the information, and
providing a representation which allows accurate and efficient retrieval based on the
user’s request.

Traditional query-by-content algorithms operate on the principle that a query can
be formulated which accurately describes features that can be extracted automatically
by the system, such as color, texture and shape. In the case of video this approach
must be augmented to deal with the additional temporal and spatio-temporal dimen-

sions.



In our system, we address these issues by providing algorithms which perform
these tasks on compressed video. In particular, we consider the problem of extracting
indexable features from compressed MPEG frames, indexing the features for each
clip and providing efficient query capabilities. We present techniques which provide
a framework within which all types of MPEG frames can be considered equivalent.

In the next section, we provide some background on compressed domain video
analysis, including a brief description of MPEG compression, and an overview of

related work.

2 Background

The analysis of compressed video can proceed in one of two fundamental ways. The
first is by decompressing some or all of the video and using the individual frames
to gather information about various characteristics of the video such as content or
motion, and extracting indexable features in the pixel domain. The second involves
exploiting encoded information contained in the compressed representation without
incurring the overhead of complete decompression.

The problem of video retrieval arises when a user or an application poses queries
to a large database of video clips in some format, and a fast, efficient, and precise
reply is required. If the query is an image or another video and the user requests
that the system retrieve similar clips, it is called a “query-by-example”. In this case,
the main challenge in comparing clips or frames of a clip is providing a suitable
definition of what it means for two clips to be similar. In the pixel domain, color-
based similarity can be implemented using, for example, features extracted from
color histograms, or a pixel by pixel comparison, though the latter is computationally
expensive. Other methods of specifying queries may involve the user sketching the
shapes that he/she is interested in, or providing textual queries to access annotations
that were derived automatically or entered manually. Other features that can be

used to define similarity which have proven useful in related domains include image



texture, object shape, and spatial relations between objects.

With an increasing amount of video available, and given the query challenges
stated above, automated techniques for searching large video databases in a fast,
efficient manner are necessary. Since decompressing video is very time consuming, we
explore techniques for analyzing video using the information available in an MPEG-

compressed video stream.

2.1 MPEG stream

The Moving Picture Expert Group (MPEG) standard for digital video is arguably
the most widely accepted international video compression standard. The MPEG
encoding algorithm [12] relies on two basic techniques: block-based motion compen-
sation to capture temporal redundancy, and transform-domain-based compression to
capture spatial redundancy. Motion compensation techniques are applied using both
predictive and interpolative techniques. The prediction error signal is further com-
pressed using spatial redundancy reduction techniques. The fact that temporal and
spatial changes are fundamental for segmentation makes MPEG an ideal candidate
for compressed domain analysis.

An MPEG stream [11] consists of three types of frames — 1P, and B frames —
occurring in a repetitive pattern (called the IPB pattern). An I frame is an anchor
frame that is simply a JPEG encoding [15] of its corresponding pixel image. A P
frame is predicted from its preceding I or P frame, and a B frame is predicted from
both its preceding and following I and/or P frames. T and P frames are collectively
called reference frames since only these two types of frames are used during prediction
and interpolation of other frames. Figure 1 shows an example of the predictive rela-
tionships. For most clips, such as the example shown in Figure 1, the IPB pattern
is regular with the number of B frames between reference frames and the number
of P frames between I frames being constant. Clips with irregular IPB patterns do

not pose a problem to our system; in later sections we describe techniques to han-



dle such cases. All three types of frames are ultimately encoded using 2D Discrete
Cosine Transform (DCT), quantization, and run-length coding. In the I frames, the
DCT information is derived directly from the image samples, but in the P and B
frames, the DCT information is derived from the residual error after prediction. The
motion compensation information represented as vectors is also differentially coded.
We use the term ‘motion vector’ to refer to the block-based motion compensation
vector. Fach frame in the clip is divided into blocks of 16x16 pixels called Mac-
roblocks (MBs), and most of the low-level processing, including spatial and temporal
redundancy reduction, is performed at this level of spatial resolution.

During the encoding process, a procedure is run on each macroblock in a P frame,
to see if that macroblock can be predicted from its corresponding block in the previous
I/P frame with a possible offset to compensate for motion. If it appears that little
would be gained in predicting and encoding, then that block is not predicted but is
intra-coded. This typically occurs if the current macroblock does not have much in
common with the previous one. Every P frame therefore consists of intra-coded MBs
and forward-predicted MBs. There are also skipped MBs which resemble forward-
predicted MBs, since they are identical to some 16x16 block of the previous reference
frame.

Similarly, for each macroblock in a B frame, a test is made to see if it can be
predicted from both its previous and next I/P frames, its previous I/P frame alone,
its next I/P frame alone, or if it cannot be predicted from any reference frame and
thus must be intra-coded. An MB can also be skipped if it is identical to some part of
the reference frames and the residual error becomes zero. Each skipped MB behaves
identically to the previous non-skipped MB in the current slice of the current frame.!
In other words, the first MB of a slice cannot be skipped, and if the MB type and
motion vectors of this non-skipped MB are sufficient for any continuous string of MBs

in the slice immediately following the non-skipped MB, those MBs are skipped. Each

!MBs in a single frame are grouped into slices of MBs, as a means of layering.
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Figure 1: Predictive relationships between I, P and B frames

MB in a B frame can be of any one of these five types.

The MPEG standard does not specify which techniques are to be used for motion
estimation and prediction during the encoding process. Thus, little can be assumed
about the quality of the prediction obtained while encoding. Nevertheless, we assume
that the prediction techniques are reasonable enough to yield reliable motion vector
and macroblock data. The reader should refer to two articles by Le Gall [11, 12] for
more information on MPEG.

The computationally expensive step in decompressing MPEG video is the inverse
DCT (IDCT), which should be avoided if possible. The information available in the
compressed representation without performing IDCT includes the type of each MB,
the DCT coefficients of each MB, and the motion vector components for the forward,
backward, and bidirectionally predicted MBs. The approach followed in this paper

involves utilizing all three: the MB types, DCT coefficients, and motion vectors.



2.2 Related work

The video indexing and retrieval problem has been addressed by researchers in a
number of ways. A survey of digital video parsing and indexing technologies, mainly
in the pixel domain, is presented in the paper by Ahanger and Little [1], including a
discussion of research trends in video indexing and requirements of future data deliv-
ery systems. Topics such as video data indexing, video data modeling, information
extraction, and video scene segmentation are also presented.

In other work, Zhang et al. [17] describe techniques for use in the pixel domain
for dealing with the representation of shot content, as well as content-based retrieval
techniques using key frames and temporal properties of shots. They also present
techniques for video parsing in the pixel domain followed by key frame extraction.
The representation of shot content is based on several types of features, including
color histogram and moment features, texture features, shape features, and edge
features. Similar work can be found in [13] by Nagasaka and Tanaka who present
pixel-domain techniques for performing full-video search for specified objects using
features derived locally. Two recent papers by Flickner et al. [7] describe the QBIC
system, which performs content-based retrieval based on color, shape, texture, and
sketches in large image and video databases. Ardizzone et al. [2, 3] also deal with
content-based video indexing based on motion, color, and texture and other global
features. All the aforementioned papers present techniques in the pixel domain, but
much less has been done in the compressed domain.

Idris and Panchanathan [8] propose an algorithm based on vector quantization
(VQ) for indexing of video sequences in compressed form. During compression, the
image is decomposed into vectors and mapped to a finite set of codewords and encoded
using adaptive VQ. Each frame is represented by a set of labels and a codebook which
are used to generate indices. A generic paper on compressed-domain video indexing
techniques by Chang [5] describes some of the issues involved in addressing such a

problem in the DCT, wavelet, and subband transform compressed domains.



2.3 Approach

Our approach to compressed domain indexing and retrieval can be split into three
parts — segmentation, indexing, and query processing. First, video segmentation
divides the incoming video into shots or scenes, and selects one or more key or rep-
resentative frames for each shot. A shot in a video clip is defined as a maximal se-
quence of frames resulting from a continuous uninterrupted recording of video data.
These shots may be further subdivided into scenes, if, for example, significant cam-
era motion? is present. This step has been presented in our earlier work on video
segmentation [9, 10] and is described briefly in Section 3, along with the key frame
identification procedure.

Second, features are extracted from the key frames supplied by the segmentation
process and used to create a database index (Section 4). The features used are derived
from the DCT coefficients and the motion vector information available in the MPEG
compressed video. Unfortunately, the dimensionality of each feature vector prohibits
the implementation of standard database retrieval techniques, not to mention the
tremendous overhead of storage per frame. Using a technique called FastMap [6], the
dimensionality of the features can be reduced to a manageable level where they can
be represented using standard database techniques (Section 5).

Finally, when need arises, the database is accessed using the features derived
from a query clip as an index. When a query arrives, segmentation and key frame
extraction is performed, if necessary, and features are extracted from the key frames
of the query. These features are then used to index into the database to perform
retrieval. By mapping the query to the same space as the stored key frames, standard
similarity metrics such as Euclidean distance between a query frame and frames in
the database can be used to retrieve the best matches. Experiments and results of

query processing are discussed in Section 6.

?Throughout this paper, we assume that “camera motion” refers to operations like panning,
tilting, and zooming a stationary camera and not to changes in the position of the camera.
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Figure 2: Flowchart of our approach

Figure 2 shows the flowchart of how the individual components of the system

interact.

3 Video segmentation overview

Our approach to indexing involves extracting a set of key frames for the entire clip,
such that as much of the content of the video is captured as possible, but at the same
time, redundant frames are excluded. Two key frames of essentially the same content
that are separated by other key frames are not considered redundant, as the physical
and temporal structure of the video needs to be preserved.

The first step involves segmenting the video by identifying the frame(s) where
a transition takes place from one shot to another. A change which occurs exactly
between two frames is called a cut or a break, whereas transitions that occur gradually
over several frames are called fades, dissolves, wipes, or special effect edits.

Our approach to segmentation analyzes the types of MBs that have been used
to encode the P and B frames, and uses the counts of the different types of MBs to
derive a metric that pinpoints where cuts or breaks occur. An analysis of the mac-
roblock types alone does not always provide sufficient information to indicate that a
shot change occurs between two frames. We have developed a DCT validation proce-
dure that is used to confirm the existence of shot changes for which the macroblock

information is found to be insufficient.



SCENE 1 SCENE 2

PAN

ZOOM
SUBSHOT 1 SUBSHOT 3 I — SHOT BOUNDARY
SHOT 1 suesWor2 s __ SUBSHOT BOUNDARY
DUE TO CAMERA MOTION
,,,,,,,,,,,,,, SCENE BOUNDARY DUE
TO CHANGE IN CONTENT
SHOT 2

Figure 3: Diagram showing the shot subdivision concept.

If large camera motion is present in a single shot, then two frames that are spaced
well apart in the shot may be quite dissimilar. Therefore, once video is segmented into
shots, these shots are further segmented into “subshots” based on some attribute, that
exists in common among the frames of the subshot. When shots are subdivided based
on changes in content due to camera motion, these subdivisions are called “scenes”
(Figure 3). Our approach to subdividing shots into scenes involves using the motion
vectors encoded into the MPEG format to determine any type of camera motion that
may be present, including zoom-in, zoom-out, pan left, pan right, tilt up, tilt down,
or a combination of pan and tilt. We use the “flow” information (to be described
in the next section) to derive a unique vector (called the dominant flow vector) that
describes the relative displacement of the contents of the current frame with respect
to the next frame. Starting from the first frame of the shot, by successively adding
these dominant flow vectors, we can determine the displacement of each frame from
the first frame. The magnitude of this total displacement vector gives an estimate of
the magnitude of the perceptual translation caused by the motion of the camera. By
comparing this magnitude with the dimensions of the frame, we determine whether

the particular frame under consideration has undergone enough translation from the
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first frame, and if so, the frame is tagged as the possible start of a new scene. If
the camera motion involves a zoom operation, we tag the last frame of the zoom
sequence as the possible start of a new scene. By comparing the DCT information
of the tagged frame with the DCT information of the frame from which the total
displacement vector is calculated, we can determine if the current frame is a true
candidate for the start of a new scene.

The final step in the segmentation process involves identifying a key frame for
each of the subshots or scenes. Different subshots that have been divided based on
camera motion may or may not have similar content, or there may be different content
in the same subshot; such subshots would not be the best candidates for key frame
selection. Choosing key frames of scenes allows us to capture most of the content
variations, due at least to camera motion, while at the same time excluding other key
frames which may be redundant.

The reader can refer to our previous work [9, 10] for more information on segmen-

tation of video.

3.1 Key Frame Identification

It is important that the choice of key frames be made carefully, since a key frame
will represent an entire shot in all future applications. The key frame candidates
should possess all the requisite information to enable features to be extracted, and
also enable the features to capture as much of the content and other attributes of the
scene as possible.

The ideal method of selecting key frames would be to compare each frame to
every other frame in the scene and select the frame with the least difference from
other frames in terms of a given similarity measure. Obviously, this requires extensive
computation and is not practical for most applications. On the other hand, choosing
the first frame seems to be the natural choice, as all the rest of the frames in the scene

can be considered to be logical and continuous extensions of the first frame, but it
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may not be the best match for all the frames in the scene. A third possible choice
is the middle frame of the scene, as it might be expected to have the most similarity
with all the other frames of the scene, although this is not guaranteed. In a more
general framework, we would like to choose frames with the greatest content or index
potential — for example, frames with text, or frames with a clear unoccluded object.
Other factors that influence the choice include encoding patterns. For example, the
frequency of 1 frames may affect the choice, as I frames represent the best candidates
for key frame selection since they have the actual DCT coefficients which form the
spatial component of the data. If T frames occur fairly frequently, then the first 1
frame can be chosen as the key frame. It is, however, possible to have an entire scene
with no I frame, in which case, alternate measures are required.

We have found it is, in general, sufficient to select the first frame of each scene
as a key frame. This is based in the observation that cinematographers attempt to
“characterize” a shot with the first few frames, before beginning to track or zoom to
a close-up. The practical reason for this choice will become clear in the next section,
as we develop techniques to circumvent the problems due to encoding, and generate
a framework where all frames can be considered equivalent.

In the final representation, the video is partitioned into a set of scenes which

exhibit consistency in content, and each scene is represented by a key frame.

4 Feature Extraction

A difficulty with identifying key frames in video that has been compressed by a
method like MPEG is that frames can be of different types, i.e., I, P, or B frames
and can occur in a variety of patterns. An I frame contains DCT coefficients of
actual pixel data, but has no motion vectors, whereas a P or B frame contains DCT
coefficients generated from residual error data after prediction or interpolation from
other reference frame(s), but has motion vectors relating the frame to its reference

frame(s). Different MPEG clips may also have different patterns of I, P, and B
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frame orderings. A problem then arises when we try to identify key frames and
subsequent index information. Should we identify only certain types of frames, for
example, I frames, as key frames, or do we desire the flexibility to choose any frame
independently of the frame type? To avoid these problems, we desire a frame-type-
independent representation, in which all the features that we extract for the indexing
and retrieval phase are obtained independently of factors such as frame type.

In our indexing and retrieval phase, we use the DC? coefficients and the motion
vectors of the key frames. The features that must be extracted from each key frame
include the DC coefficients, which form the spatial component, and the motion vectors
of the MBs, which form the temporal component. The next two subsections explain

the techniques used to extract these features from each type of frame.

4.1 DCT estimation

DCT coefficients are readily accessible for I frames, but since P and B frames are
represented by the residual error after prediction or interpolation, their DCT coef-
ficients need to be estimated. To calculate the DCT coefficients of an MB in a P
frame or B frame, the DCT coefficients of the 16 x16 area of the reference frame that
the current MB was predicted from need to be calculated. Let us call this area the
reference MB (though it is not an actual MB). Since the DCT is a linear transform,
the DCT coefficients of the reference MB in the reference frame can be calculated
from the DCT coefficients of the four MBs that can overlap this reference MB, albeit
with substantial computational expense. It is easy, however, to calculate reasonable
approximations to the DC coefficients of an MB of a P or B frame. Techniques for
doing this were suggested by Yeo and Liu [16] and also by Shen and Delp [14].
Figure 4 shows an MB in a P frame, MBg,,, being predicted from a 16x16 area
denoted by MBg.;. While encoding the P frame, only the residual error of MBg¢,,

30f the 64 DCT coefficients, the coefficient with zero frequency in both dimensions is called the
‘DC coefficient’, while the remaining 63 are called the ‘AC coefficients’.
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Figure 4: DC estimation: MBg,, is predicted from MBpg.s. The motion vector is
(z,9).

with respect to MBpg.s is stored. The DC coefficients of MBgr.; can be calculated
from the DCT coefficients of four MBs — MBy, MB3, MB3, and MBy (see [16] for the
details of the calculation). To avoid expensive computation, the DC coefficient alone
is approximated by a weighted sum of the DC coefficients of the four MBs, with the
weights being the fractions of the areas of these MBs that overlap the reference MB,
ie.,

4
DC(MBRef) = Zwi X DC(MBZ)

=1

where w; is given by the ratio of the area of the shaded region of MB; to its total
area.

Similarly, if an MB in a B frame is interpolated from two reference MBs, its DC
coefficient is approximated by an average of the estimated DC coefficients of each of

these two MBs.

4.2 Flow estimation

An MB can have zero, one, or two motion vectors depending on its frame type and
whether the MB is intra-coded, forward- or backward-predicted, or bidirectionally-
predicted, respectively. Moreover, the motion vectors of a given frame can be forward-
predicted or backward-predicted with respect to a reference frame which may or may

not occur adjacent to it. A problem occurs if, for example, we wish to compare an |
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frame with no motion vectors to a B frame with primarily bidirectionally-predicted
MBs, or even two B frames, one of which is primarily forward-predicted and the other
primarily backward-predicted. We therefore require a more uniform set of motion
vectors, independent of the frame type and the direction of prediction.

Our approach involves representing each motion vector as a backward-predicted
vector with respect to the next frame, independent of frame type. The set of motion
(or “flow”) vectors for each frame then represents the direction of motion of each MB
with respect to the next frame.

It should be noted that not all MBs will have this flow vector associated with them;
but the number of such MBs is rarely large enough to affect our analysis. Across shot
cuts or breaks, most of the MBs are not expected to have flow information.

The first step in deriving the flow is to analyze the frame-type pattern (i.e., the
pattern of I, P, and B frames) in the MPEG stream. If the video is in XING format,
i.e., it contains only I frames, then there exists no motion information and this analysis

is not relevant.

For clips containing only I and P frames: If there are only P frames between
I frames, and there are no B frames, then flow can be derived for each of the frames
between two consecutive I frames, including the T frames themselves, except for the
last P frame, for which we have no information about its relationship with the I frame
that follows it.

The flow for an I frame that is followed by a P frame is the set of forward-predicted
motion vectors of the P frame after inversion. Intuitively, if an MB in the P frame
is displaced by a motion vector (z,y) with respect to an MB in the I frame, then it
is logical to conjecture that the latter MB is displaced by a motion vector (—z, —y)
with respect to the MB in the P frame. The same reasoning is applied to the flow
estimation of the MBs of a P frame that is followed by another P frame. The MPEG
stream, however, does not contain any information relating a P frame to the I frame
that follows it, unless B frames are present between them.

14



For clips containing B frames: Most MPEG streams contain B frames between
consecutive reference frames. Let us consider two consecutive reference frames, R;
and R;. Define domain D to be the set containing all B frames between the two

consecutive reference frames R; and E;, and the frame R; itself:

R; BB, ... B,R,
—_—

domain D

Let the B frames in the domain be denoted by By, ..., B,, where n is the number
of B frames between these two reference frames (typically, n = 2). The first step is to
derive the flow between the first reference frame R; and its next frame By using the
forward-predicted motion vectors of By. This case is similar to the I-P case discussed
above. The inverses of the forward-predicted motion vectors form the flow vectors
for the MBs of R;. Similarly, using the backward motion vectors of frame B, with
respect to R;, the flow is derived for frame B,,. There is no need to invert the motion
vectors here, since the flow vectors essentially are backward-predicted vectors. Flow
for R; will be derived when R; is analyzed with the reference frame following R;.

We have not yet considered the case where an MB in B; does not have a forward-
predicted motion vector with respect to R;, or the case where an MB in B, does
not have a backward-predicted motion vector with respect to R;. In the former
case, we look at the next frames successively until we find a frame, say By, in which
the corresponding MB has a valid forward-predicted motion vector, and we use the
inverse of that vector. Since this vector is predicted from k frames earlier, we scale
it down by a factor of k. If we are not able to find such a B frame, we tag that
flow vector as undefined. Similarly, in the latter case, we look at the previous frames
successively until we find a B frame with a valid backward-predicted motion vector,
which is similarly scaled down by the number of frames over which it was predicted
before being assigned.

The next step is to determine the flow between consecutive B frames in the domain.

Obviously, there is no direct interaction between such consecutive B frames in the

15



MPEG stream, in contrast to the aforementioned flow derivation step involving a
reference frame.

Flow between successive B frames is derived by analyzing corresponding MBs
in those B frames and their motion vectors with respect to their reference frames.
We want to find the vector from an MB in one B frame, say B;, to the corre-
sponding MB in the next B frame, say B,. Since each MB in each B frame can
be of one of three types?, namely forward-predicted (F), backward-predicted (B), or
bidirectionally-predicted (D), there exist nine possible combinations. We can repre-
sent these nine pairs by FF, FB, FD, BF, BB, BD, DF, DB, and DD. Each of these
nine combinations is considered individually, and flow is estimated between them by
analyzing each of the motion vectors with respect to the reference frame.

Let the forward-predicted motion vector of the current MB in B; be denoted by
B;Ri, and let the forward-predicted motion vector of the corresponding MB in B, be
denoted by ByR;. If, we denote the flow between the MBs of the B frames by Bl-Bg,

then we have the relationship
—ByRi = —BiRi+ BB,

from which By B, can be obtained easily. Since only the forward-predicted motion
vectors BiR; and ByR; are required, this covers the cases of the MB pair having
patterns FF, FD, DF, or DD.

Similarly, if the MB pair has pattern BB, BD, or DB, we can find B B, by using
the backward-predicted motion vectors of B; and B, with respect to R;. Let the
backward-predicted motion vector of the current MB in B; be denoted by Bl_Rj, and
let the backward-predicted motion vector of the corresponding MB in By be denoted
by Bg-Rj. Then we have

BiR; = By B, + ByR;

4Skipped MBs are also actually either forward, backward, or bidirectionally predicted. Intra-
coded MBs have no motion vectors and are therefore not considered, and their flow vectors are

undefined.
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from which Bl_BQ can be obtained easily.

The only remaining cases to be considered are FB and BF. Clearly, for the case of
FB, the flow Bi By is undefined, because this pattern is an indication of the presence
of a cut between the two B frames.

For the BF case, we first find the flow vector R;Bl for the corresponding MB of R;
using the scale-down technique explained above. Then, using the forward-predicted

motion vector of Bsy, B;Ri, we calculate BI-BQ as
—Bz_’Ri = Ri_B1 + BI_B2

Similarly, we find the flow vector BQ_Rj for the MB in B; using the scale-down tech-
nique. Using the backward-predicted motion vector of By, Bl_Rj, we then calculate

B{Bg as

—

Bl_RJ - BI_BQ —|— BQR]

Since the vectors have been estimated with respect to the reference frames using
the scale-down technique, we take the average of these two vectors to yield a better
estimate of the actual Bl-Bg.

It should be mentioned that it may not always be appropriate to use the vectors of
the same corresponding MBs over the B frames and the reference frames. Consider,
for example, Figure 5. We wish to calculate the flow of (By);m, where [ and m denote
the indices of the current MB in the array of MBs. The forward-predicted vector of
B; is large enough that its reference 16x16 area is from another adjacent MB, with
indices [ — 1, m — 1. We then use the flow of (R;)i—1,m—1 instead of the flow of (R;) m,
which would not be proper. We assume that the need to use vectors of alternate MBs
arises only when vectors have been predicted over more than one frame, i.e., they are
not predicted over adjacent frames. We assume that using corresponding MBs of B;

and B, is sufficient.

Accuracy of computation: To evaluate the accuracy of the estimation, we must

provide ground truth and compare them to the results from the flow estimation step.
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Figure 5: Flow estimation: The MB in B is forward-predicted from an adjacent MB
in R; whose flow is used to calculate the flow of the middle MB in B;.

Flow

Flow that is
to be calculated

Using the original uncompressed image frames, we encode the frames into MPEG
files in which all B frames were replaced by P frames using a widely available MPEG
encoder called mpeg_encode developed by the Plateau Multimedia Research Group
at the University of California in Berkeley [4]. IBBPBB ordering, for example, then
becomes IPPPPP ordering. Hence every frame is a reference frame and all P frames
are predicted from their respective previous reference frames, I or P. The T frames,
on the other hand, are not related to any previous frames, and therefore the last P
frame occurring before an I frame has no flow information. Nonetheless, using the
other frames, we are still able to obtain a good evaluation of the results of the flow
estimation process.

We apply the flow estimation step to the files in IPPPPP format, and we com-
pare the flow vectors of the frames of the two encodings in three ways. First, we
quantize the vectors of the two encodings in the four principal directions and com-

pare the directions of the corresponding MBs. Second, we compare the angles the
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Table 1: Results of the flow estimation process.

Results of flow estimation

all frames frames in valid
motion sequences only
matching directions (%) 70 % 1%
angle difference (deg) 5.1° 5.4°
pixel difference ratio 0.36 0.33

corresponding flow vectors make with the positive z-axis, and determine the average
difference in angle between the vectors. Third, we determine the average magnitude
of the vector difference of two corresponding vectors in pixel units. The ratio of
this average difference vector magnitude to the average magnitude of the flow vec-
tors gives a metric for our evaluations. Due to imperfections during encoding of the
MPEG video, experimental results show that noise is frequently present in the mo-
tion vectors. Full search during the block matching phase of the encoding process is
very time-consuming. Therefore, to exclude the noise, we discard the top 15% of the
magnitudes and the angle differences, and only consider the remainder for evaluation.
The results of the three experiments are summarized in the three rows of Table 1.
The results in the first column are for all the frames of our test clips, whereas the
results in the second column are for the frames that belong to sequences in motion
classes such as zooms, pans, and tilts.

The results from the test involving only the frames in valid motion sequences
(column 2) are marginally better than those from the test involving all the frames
(column 1) because the flow vectors are more organized due to the distinct motion,
and during encoding, the block matching usually is not very flexible. In uniformly
textured backgrounds, or in frames with no motion or irregular motion, the flow can
be predicted from different directions.

Figure 6(a) shows a plot of the flow vector angle differences between the IBBPBB

and the IPPPPP encodings in a typical frame after sorting in ascending order of
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Figure 6: Flow estimation plots : (a) A sorted plot of the flow vector angle differences
between the two encodings of the same clip. (b) A plot showing the relationship
between the average flow vector angle difference and the percent of highest angle
differences omitted.
angle differences. Figure 6(b) shows how the average angle difference varies with
the percentage of highest angle differences omitted from the calculation. Since the
number of angle differences with large magnitudes is relatively low, the average angle
difference drops rather quickly with increasing percentage of omitted angle differences.

Examples of the estimated flow vectors are shown in Figures 7(a) and (b). The
first pair was taken from the beginning of a “pan left and tilt up” sequence. The
second pair was taken from a sequence in which the camera is rotating in the clock-
wise direction, and is gently tilting up at the same time. For each pair, the MB
image on the left was derived from the re-encoded IPPPPP format files, and its cor-
responding image on the right contains the estimated flow between two B frames
from the IBBPBB encoded format files. The shade of the MB represents the direc-
tion of the flow vector; the ranges of directions for each shade are shown in Figure
7(c). For “zero” vectors, the shade shown in the center of the circle was used, and
for “undefined” vectors, the shade WHITE was used.

We observe that by using the flow vectors of each frame, movements of objects can
be sketched. For example, a group of adjacent MBs having similar flow vectors can be

associated with a rigid object undergoing some motion. Once a frame is segmented
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P frame flow B frame flow

P frame flow B frame flow

()

Figure 7: Examples of flow estimation: In (a) and (b), the images on the left are taken
from the IPPPPP encoded files, and the corresponding images on the right show the
estimated flow from the IBBPBB encoded files. In (c), the shade codes depend on the
range of directions of the flow vectors shown on the circle. The shade at the center
of the circle is used for “zero” vectors, and WHITE for “undefined” vectors.
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into regions having different flow vectors, the individual segments can be displaced
according to their flows, and these deformed frames can be used to generate more
robust results during the retrieval phase. This is another reason we select the first
frame as a key frame of a scene.

Using this frame-type-independent framework, we are able to consider videos that
have differing IPB patterns as being equivalent, and we are not constrained to com-

paring videos that have the same patterns.

5 Video Indexing using FastMap

An important goal of our research is to be able to organize and retrieve video data that
a user is interested in. Now that we have extracted a uniform representation to work
on, in this section we explore techniques that can be used to organize and retrieve
video clips in the compressed domain. In the next section, we provide experimental
results to evaluate how effective these techniques are.

Given a set of video clips encoded in MPEG, we would like to index them to
allow “querie-by-frame”, or “query-by-sequence”. These allow us to ‘Retrieve the
video clips in the database most similar to this query image’, or ‘Return the three
video clips most similar to the given sequence of frames’, respectively. As video
clips have both a spatial dimension (represented by DCT coefficients) and a temporal
dimension (represented by motion vectors), we propose to use both sets of information
to determine the correct answer to the query. If the query consists of a single frame, of
course, no temporal information can be derived to match with the motion information
of the videos stored in the database. In our approach, the key frame of each scene
serves as the index for that scene, with its DC coefficients representing the spatial
dimension and its flow vectors representing its temporal dimension.

Using the DC coefficients of all the MBs of a frame alone leads to large feature
vectors, and standard database techniques become impractical. Therefore, we use a

technique called FastMap to reduce the size of the feature vectors to a manageable
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level, and use these low-dimensional feature vectors for indexing. The primary ad-
vantage of FastMap is that it runs in time linear in the number of objects in the

database.

5.1 Spatial or frame similarity

Spatial similarity between two frames implies that the frames have similar spatial
properties such as luminance, chrominance, texture, and shape. Testing for this simi-
larity involves comparing values that represent those properties. In the pixel domain,
the color and luminance values are represented by the values associated with a pixel,
but in the compressed domain, the 64 DCT coefficients together represent the values
for an 8x8 block of pixels. The DC coefficient alone specifies the average intensity
value for that block. Since we do not want to decompress individual frames, we use
the DC coefficients of the luminance and chrominance components and compare them
with the DC coeflicients of the corresponding blocks of other frames to test for spatial
similarity.

One approach to computing spatial similarity is to store all the DCT information
for every frame of every clip, since the DCT information provide a reasonable ab-
straction of the spatial information. When a query frame arrives, we can compare it
with all other available frames in order to determine the most similar one. However,
this approach is not efficient in either time or space. Since most of the frames are
similar to the frames adjacent to them, large amounts of redundancy exist. We would
like to use properties of the video clips to search only in a small subset of the frames
of a clip, and still generate robust matches.

As stated earlier, each clip can be divided up into shots and then into scenes,
with each scene denoting a basic coherent sequence of similar frames. A key frame is
chosen for each scene and that frame is used to represent that scene. The question
is then how to determine similarity between frames. One approach is to compare the

corresponding DCT coefficients of the frames directly, since in the compressed domain,
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the DCT coefficients best represent the spatial information of the frames. A simpler
approach is to treat each frame as a vector of DC coefficients alone (as opposed to all
64 DCT coeflicients) and use the Euclidean distance between the vectors to determine
the similarity of the frames. This is accomplished as follows.

In a video database, each key frame can be represented as a point in an N-
dimensional Euclidean space, where N is the number of DC coefficients. For a
320%x240 frame, there are 300 MBs, and if we use the six DC coefficients that ex-
ist in each MB, then N is 1800. Traditional multi-dimensional indexing techniques
like R-trees tend to be very inefficient in such high-dimensional spaces. Thus we need
to have a way of reducing the dimensionality of the points to a manageable level while
maintaining the proximity of the points (and thus the similarity).

To achieve this, we use the FastMap algorithm described by Faloutsos and Lin
[6]. FastMap takes as input a distance function between key frames and outputs a
point in a low-dimensional space for every key frame in linear time. The main char-
acteristic of FastMap is that the output points tend to approximate well the relative
distance between the original key frames while keeping the number of dimensions to
a manageable level.

The basic idea is that FastMap assumes the objects do indeed lie in a certain
unknown, k-dimensional space. The goal is to recover the values of each dimension,
given only the distances between the ‘points’. This is achieved through the use of
projection: we choose two objects O, and Oy (referred to as ‘pivot objects’ from now
on), and consider the ‘line’ that passes through them. We project all the points onto
this line. Since we have the distance information between the points, we utilize the
cosine law to recover the coordinates, as shown in Figure 8(a).

Given an object O; to be projected, we consider the triangle formed by O,, O,
and O;. The coordinate for object O; is equal to the length of the line segment O, F.
Applying the cosine law gives

da,i2 + da,b2 — db,z’2 (1)
2d,p
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where d; ; is the distance D(O;, O;) between two objects. Note that the computation
of z; requires only the distances between objects, which are given. Observe that,
based on Equation 1, we can map objects into points on a line, preserving some of

the distance information. Thus, we have solved the problem for £ = 1.

Ob

Oi Oi
D
3 i Xi -Xj I ! o]
| 1

Ob

Figure 8: Illustration for FastMap : (a) The cosine law. (b) Projection on to the
perpendicular hyperplane.

In order to map the objects into a multi-dimensional space, we need to extend the
method so that more coordinates can be generated. Once again, we assume the points
to be lying in a k-dimensional space (Figure 8(b)). After the first step of FastMap, we
have found a line (O,, 0,) on which we can project all the points. Consider a k — 1-
dimensional hyperplane H perpendicular to that line. If we project all the points
onto this plane, the points lie in a k£ — 1-dimensional space. Let O; stand for the
projection of O; (for ¢ = 1,...,n). Thus, the problem is transformed to one of finding
the coordinates for objects on the hyperplane H. This is the same as the original
problem, with k& decreased by 1. Once we obtain the projected distances between the
points, we recursively apply this algorithm to generate the next coordinate.

To obtain the projected distances D'() between the points on the hyperplane H,
consider the triangle (C, 0;,0;) in Figure 8(b). The Pythagorean theorem gives the

following equation from which the projected distances are calculated:
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(D'(0/,0§))* = (D(0i, 07))* = (zi — z5)* 4,5 =1,...,n (2)

Although we indicated that we were projecting onto a k& — 1-dimensional space,
note that initially k& is arbitrary. We can repeat the above procedure to generate
coordinates in any number of dimensions.

For each new axis/dimension, the basic steps of the algorithm are:
1. Pick two pivot objects (as far apart as possible).
2. Compute the projection of each object on the ‘line’ defined by the pivot objects.

Note that the second step takes linear time. In order for the algorithm to run fast,
we need to ensure that the first step also takes linear time. Thus we need a heuristic
that can select the pivots in linear time. We would like the pivots to be far apart,
however, so that the objects will be more spread out along the projection axis. To
avoid costly O(n?) algorithms, we use a linear time heuristic: starting with a point,
pick the point that is farthest away from it. Then use this new point, and repeat this
heuristic. Thus the complexity of FastMap is O(n). The reader can refer to a paper
on FastMap[6] for more information, including the pseudo-code of the algorithm.

In retrieval, it is necessary to map new objects (like queries) onto the space formed
by FastMap. This can be done efficiently. Since we can retain the pivots picked by
FastMap, we can calculate the projection of the new point onto each axis to obtain
its coordinates.

Using FastMap, together with the Euclidean distance function, we can organize the

frames in an efficient spatial data structure and retrieve nearest neighbors efficiently.

5.2 Temporal similarity

As stated earlier, MPEG streams provide motion information as part of the encoding.
Many clips have shots of fairly similar content, e.g., conversational scenes. Key frames

can be generated for the same content or action occurring at different points in a clip.
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If the query comes in the form of a video clip, e.g., ‘Retrieve video clips that might
contain this short video scene’, we can also compare the motion information. We can
consider the corresponding macroblocks of the query key frame, and the set of key
frame candidates short-listed by the technique presented in the previous section, to
find the candidate key frame undergoing the most similar motion, and return that
key frame as the best match.

Our focus is primarily on the direction of the motion and not the maginitude,
which gives us a measure less susceptible to noise and minor changes. For each
frame to be indexed, we identify the direction of the flow vectors and quantize them
angularly into eight bins. We compare the flows of corresponding blocks and use
the number of corresponding blocks that have the same flow direction as a second

measure of similarity.

6 Experiments and Results

Our system combines both spatial and temporal similarity techniques to provide a
simple and efficient method of indexing. First, we index into the key frames using the
vectors generated by FastMap from the DC coefficients. These DC coefficients are
readily available if the query frame is an I frame of a video clip, or a JPEG image.
If it is a B or P frame, the coefficients are estimated using the technique referred to
earlier, or if it is an image in a different format, it can be converted to a JPEG image.
If a query consists of only one frame, we use the index of the FastMap vector to locate
the key frame which is most similar to the query. We can also return the first few
most similar frames and let the user browse the results. In the case of a short query
sequence, we ask one query for each frame of the query sequence, and tabulate the
votes to identify the winners. These key frames are treated as candidates, and we
compare any motion information to modify their ranking.

For the experiments, we used a total of 30 videos containing approximately 15,000

frames digitized at frame rates varying from 5 to 30 frames per second (fps). A total
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of 329 key frames were identified. For the experiments, we used the first I frame in a
subshot or scene as a key frame, instead of the first frame regardless of the frame type,
because the I frames do not have the estimated DC coefficients that P and B frames
have. This enabled us to study the effectiveness of the method under ideal conditions
instead of having noise or artifacts from the DC estimation hinder our evaluation.
The clips can roughly be divided into five categories — sports clips, news clips, movie
clips, commercial clips, and outdoor surveillance clips. The five groups of videos
have different visual properties. For example, the sports clips have predominantly a
green grassy field in the background and involve large amounts of motion, while the
newscast clips feature people speaking in front of a (generally) dark background with

very little motion. The surveillance videos were taken in bright daylight outdoors.

Clustering: Figure 9 shows the clustering of the key frames achieved in a FastMap
space of three dimensions. The key frames in Figure 9(a) were taken from different
clips of the same movie and cluster well. Figure 9(b) shows three distinct clusters
of key frames, with the sparse clusters at the left and middle taken from one movie.
The two clips that form those clusters are of the same two scenes with each scene
forming one cluster. The large cluster at the right is composed of key frames taken
from four news interview clips of essentially the same content. Figure 10(a) shows the
grouping of the key frames of the surveillance shots, and Figure 10(b) shows primarily
two clusters, with the smaller cluster containing key frames from a football game on
natural grass, and the larger cluster containing key frames from another football game
on astroturf and a baseball game. In Figures 9 and 10, the same scale is used for each

of the three axes.

Indexing and Retrieval: Any newly developed technique is incomplete without a
thorough testing of its reliability and validity based on quantitative results. First, a
test needs to be performed in which, if a query that is clearly very similar to an existing

index in the databse is posed to the system, the system finds the appropriate match. If
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Figure 9: Key frame clusterings.
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Figure 10: Key frame clusterings.
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this appropriate match is known a priori, evaluating performance is straightforward.
Second, if random queries consisting of similar and dissimilar queries are posed to
the system, the system should find the best match. For this, we require a means of
determining whether the system was able to retrieve the best possible match. That
is, we require a means of determining whether the match obtained was the same as
the match an ideal retrieval system would find. We use a retrieval system employing
all the original features (all 1800 DC coefficients) and the Euclidean distance metric
as the ideal retrieval system.

Two tests of indexing and retrieval were performed. First, a test was performed to
see that if a query that is clearly very similar to an existing index in the database, is
posed to the system, the system retrieves the appropriate match. This test consisted
of 329 query sequences, one for each key frame in the database, formed by taking
the six frames immediately following each key frame. In all the test clips, I frames
occurred every six frames, so we used the ‘flow’ of the sixth offset frame for matching
with the flow of the key frame. We used the pivots generated by FastMap to calculate
the coordinates of the query frames and then found the nearest key frame point(s).
A successful query should identify the key frame of the clip and retrieve the shot
from which the query frame was taken. The two parameters that were varied were
the number of dimensions FastMap produced, and the number of nearest neighbors
retrieved. Tests were carried out for FastMap dimensions 4, 6, 8, 10, and 15. The
number of nearest neighbors retrieved varied from 1 to 3 (ordered by distance to the
query point).

The query results can be categorized into three types.

Queries that yielded the correct answer as one of the top choices (type A). By a
correct answer, we mean that the retrieved key frame is the most recent key
frame in the temporal ordering, i.e, it is the key frame of the scene in from

which the query was taken.

Queries that yielded another key frame from the same clip (type B). In this case,
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the retrieved key frame was not the most recent in the temporal ordering, but
another key frame from the same set of key frames generated from that clip.
This happened primarily in two situations. (1) When there were many shots
(and thus key frames) that had exactly the same content, and thus the query
found a match with one of those alternate shots instead of the shot from which
the query was taken. (2) When one continuous shot contained many scenes
(and thus key frames) due to changes in content (e.g. due to camera motion)
and where the key frame of the next scene was more similar to the query than

the key frame of the current scene.

Queries that missed (type C). None of the top choices were from the same clip.

Some type C misses can be justified because we had many clips of the same “pro-
gram”, a football game for example. Figure 11(a) shows a line plot of the percentage
of queries that were missed (type C) in the first test as a function of the number of
dimensions and the number of top choices retrieved. The graph shows that the miss
rate drops to zero for just the top choice at 15 dimensions, while for the top two and
three choices it drops to zero at 8 dimensions.

Figure 11(b) shows line plots of the percentages of queries that yielded correct
results (type A) as the top choice (‘top 1’), as the top choice when using flow
(‘toplwithflow’), and when returning the top two (‘top2’) and top three (‘top 3’)
frames. The graphs show that better correct retrieval rates and lower miss rates are
achieved by increasing FastMap dimensions or nearest neighbor choices. We observe
a substantial increase in correct retrievals for the ‘top choice with flow’, as compared
with correct retrievals when the flow information is not utilized. The percentages of
type B results can be calculated from the type A and type C percentages shown in
the two plots. From the graphs, it can be seen that we were able to attain over 95%
correct recall with only three frames retrieved.

For the second the set of tests, one frame was selected from every 30 frames in a

clip as a single query frame, yielding a total of 473 test frames. This experiment was
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Figure 11: Retrieval results on video : (a) Recall miss percentages for the ‘frame
offsets 1 to 6’ test. (b) Correct retrieval percentages for the top 1,2,3 choices, and
also for the top choice with flow confirmation.

conducted to study how the technique performs on simulated random queries. In this
experiment, a query could be quite distant from the the key frame of the scene that
it belongs to. Key frame retrieval was performed using each of these query frames
and its ‘flow’. By using the frame numbers of shot boundaries, correct results were
identified. Tests were carried out for 4, 8, 10, and 15 dimensions, while varying the
number of nearest neighbors from 1 to 3.

Figures 12(a) and (b) show the graphs for the ‘every 30 frames’ test. The miss rate
for low dimensions is quite high for just the top choice, but drops to an acceptable
level for higher dimensions with the top three choices. Due to the randomness of the
queries, one would not expect results similar to those of the ‘frames 1 to 6’ test. As
in the previous test, we observe an increase in correct retrieval with rearrangement of
the top choices according to flow similarity. The results of such a test depend largely
on the set of key frames used. The more the set of key frames is representative of the
entire content of the video, the better is the absolute performance. Only a relative
comparison with some ideal retrieval system can be used to evaluate the performance
of our technique.

To evaluate the accuracy of FastMap we compared FastMap retrieval with an ideal

retrieval system employing the Euclidean distance metric with the original features.

33



Miss percentages for Top 1,2,3 choices for ‘every 30 frames’ test Retrieval percentages for Top 1,2,3 choices for every 30 frames' test
T T T T

vvvvvvvvv

,,,,,,,,,,,,,,,,,,,,,,,,,,

topl’ —
‘toplwithflow' ~+--
‘top2’ -8

p:
top3' -

Number of Dimensions Number of Dimensions

Figure 12: Retrieval results on video : (a) Recall miss percentages for the ‘every 30
frames’ test. (b) Correct retrieval percentages for the top 1,2,3 choices, and also for
the top choice with flow confirmation.

We performed the ‘every 30 frames’ test with all 1800 DC coefficients and used a
pure Euclidean distance metric to find the nearest neighbors of each of the query test
frames. The percentage of queries that resulted in misses (result type C) was 13.5%.
Figure 13 shows the plot of miss percentages for each of dimensions 4, 8, 10, and 15
and for the top one to top three nearest neighbors. The percentage of misses obtained
by using pure Euclidean distance without any dimensionality reduction is shown by
the horizontal line. With four dimensions, taking the top two choices performed
slightly better than just using Fuclidean distance, whereas for dimensions 8 and 10,
the top two choices were much better. For 15 dimensions, even the topmost choice
was sufficient to yield better performance than the Euclidean distance metric.
Figures 14(a) and (b) illustrate some sample query results. The leftmost frame is
the query, followed by the three top matches to its right. With the above-mentioned
number of key frames in the database, these experiments show that queries can be

processed in a fraction of a second on a SunSPARC 20 workstation.
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Figure 13: Recall miss percentages for ‘every 30 frames test’ showing comparison with
FEuclidean distance results.

7 Conclusion

We have presented techniques for indexing and retrieval of MPEG-compressed video
directly from the compressed domain without performing expensive decoding compu-
tations. Video is parsed into shots, subshots, and scenes, and key frames are selected.
Features are then extracted from these key frames. We have discussed ways of gen-
erating a framework in which the I, P, and B frames can be considered equivalent,
thereby avoiding any restrictions imposed by the MPEG encoding process. Using the
FastMap algorithm, the DC coefficients of the key frames are transformed into man-
ageable vectors for archiving, and indexing is performed using these low-dimensional
vectors. The motion information is further used to test the potential candidates to

yield more robust results.
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Figure 14: Retrieval results on video : (a) Example 1 from the ‘every 30 frames’ test.

(b) Example 2 from the ‘every 30 frames’ test.
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